Add like
Add dislike
Add to saved papers

Continuous treatment of highly concentrated tannery wastewater using novel porous composite beads: Central composite design optimization study.

This present study depicts the successful employment of fixed-bed column for total chromium removal from tannery wastewater in dynamic mode using sodium alginate-powdered marble beads (SA-Marble) as adsorbent. The SA-Marble composite beads prepared were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and Brunauer, Emmett and Teller (BET) method. The adsorption process performance of this bio-sorbent was examined in batches and columns for real effluent (tannery wastewater). After 90 min, the total chromium removal efficiency could be kept above 90% in the batch experiment. The adsorption kinetics fit better with the pseudo-second-order model, indicating the chemisorption process and the adsorption capacity of about 67.74 mg g-1 at 293 K (C0 = 7100 mg L-1 ) was obtained. Additionally, dynamic experiments indicate that the total chromium removal efficiency could be maintained above 90% after 120 min at 293 K and 60 min at 318 and 333 K; it's an endothermic but rapid process. The effects of two adsorption variables (Temperature and time) were investigated using central composite design (CCD), which is a subset of response surface methodology (total Cr, COD, sulfate, and total phosphorus percentage removal). This work paves a new avenue for synthesizing SA-Marble composite beads and provides an adsorption efficiency of total chromium removal from tannery wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app