Add like
Add dislike
Add to saved papers

Potential of some microbial isolates on diesel hydrocarbons removal, bio surfactant production and biofilm formation.

Potential of Arthrobacter citreus B27Pet, Bacillus thuringiensis B48Pet and Candida catnulata to produce biosurfactant using four different carbon sources (naphthalene, hexadecane, diesel and petroleum crude oil) was investigated. Removal of petroleum crude oil from aqueous culture and degradation of diesel were also determined using single and mixed culture of strains. The biofilm existence in single and mixed culture of strains was considered using naphthalene, hexadecane and diesel in culture medium. Cell surface hydrophobicity of A. citreus was higher than other isolates which also showed maximum surface tension reduction and emulsification index. As a whole, remarkable biosurfactant production occurred using petroleum crude oil as a carbon source in medium. A. citreus was found to be more robust than other tested strains in removal efficiency of crude oil due to its biosurfactant production capability. Statistically significant positive correlation was observed between biofilm existence and surface tension using diesel and hexadecane as carbon source. Overall diesel biodegradation efficiency by the mix culture of three applied strains was about 75% within a short period of time (10 days) which was accompanied with high biofilm production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app