Add like
Add dislike
Add to saved papers

Modeling the Selectivity of Hydrotalcite-Based Catalyst in the Propane Dehydrogenation Reaction.

The propylene production processes currently used in the petrochemical industry (fluid catalytic cracking and steam cracking of naphtha and light diesel) are unable to meet the increase of propylene demand for industrial applications. For this reason, alternative processes for propylene production have been investigated, and among the others, the propane dehydrogenation (PDH) process, allowing the production of propylene as a main product, has been industrially implemented (e.g., Catofin and Oleflex processes). The main drawback of such processes is closely linked to the high temperature required to reach a sustainable propane conversion that affects catalyst stability due to coke formation on the catalyst surface. Accordingly, the periodic regeneration of the catalytic bed is required. In this work, the performance in the PDH reaction of different Sn-Pt catalysts, prepared starting by alumina- and hydrotalcite-based supports, is investigated in terms of propane conversion and selectivity to propylene in order to identify a more stable catalyst than the commercial ones. The experimental tests evidenced that the best performance was obtained using the catalyst prepared on commercial pellets of hydrotalcite PURALOX MG70. This catalyst has shown, under pressure conditions of 1 and 5 bar (in order to evaluate the potential future application in integrated membrane reactors), propane conversion values close to the thermodynamic equilibrium ones in all of the investigated temperature ranges (500-600 °C) and the selectivity was always higher than 95%. So, this catalyst was also tested in a stability run, performed at 500 °C and 5 bar: the results highlighted the loss of only 12% in the propane conversion with no changes in the selectivity to propylene. Properly designed experimental tests have also been performed in order to evaluate the kinetic parameters, and the developed mathematical model has been optimized to effectively describe the system behavior and the catalyst deactivation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app