Read by QxMD icon Read

Industrial & Engineering Chemistry Research

Benjamin Klemm, Francesco Picchioni, Patrizio Raffa, Frank van Mastrigt
In the present study the performance of a series of star-like branched polyacrylamides (SB-PAMs) has been investigated in oil recovery experiments to ultimately determine their suitability as novel thickening agent for enhanced oil recovery (EOR) applications. Hereby, SB-PAMs were compared with conventional linear PAM. The effect of a branched molecular architecture on rheology, and consequently on oil recovery was discussed. Rheological measurements identified unique properties for the SB-PAMs, as those showed higher robustness under shear and higher salt tolerance than their linear analogues...
July 11, 2018: Industrial & Engineering Chemistry Research
Marcelo Silva, Leydi Castellanos, Marcel Ottens
Adsorption can be an effective way of purifying polyphenols from complex mixtures. However, polyphenols may be present in small concentrations, making it difficult to selectively adsorb them onto standard hydrophobic resins and obtain appreciable adsorption. In this work, nonfunctionalized hydrophobic resins (Amberlite XAD-7HP, XAD-16) are compared with functionalized resins with imidazole (Biotage RENSA PX) and pyridine (RENSA PY) in terms of capacity and selectivity toward p -coumaric acid, trans -resveratrol, and naringenin...
April 18, 2018: Industrial & Engineering Chemistry Research
Tim M Becker, Meng Wang, Abhishek Kabra, Seyed Hossein Jamali, Mahinder Ramdin, David Dubbeldam, Carlos A Infante Ferreira, Thijs J H Vlugt
For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance...
April 18, 2018: Industrial & Engineering Chemistry Research
Jiangtao Lu, Elias A J F Peters, Johannes A M Kuipers
In this paper, an efficient ghost-cell based immersed boundary method is applied to perform direct numerical simulation (DNS) of mass transfer problems in particle clusters. To be specific, a nine-sphere cuboid cluster and a random-generated spherical cluster consisting of 100 spheres are studied. In both cases, the cluster is composed of active catalysts and inert particles, and the mutual influence of particles on their mass transfer performance is studied. To simulate active catalysts the Dirichlet boundary condition is imposed at the external surface of spheres, while the zero-flux Neumann boundary condition is applied for inert particles...
April 4, 2018: Industrial & Engineering Chemistry Research
Rick T Driessen, Martin J Bos, Derk W F Brilman
Currently there are significant amounts of natural gas that cannot be produced and treated to meet pipeline specifications, because that would not be economically viable. This work investigates a bench scale multistage fluidized bed (MSFB) with shallow beds for sour gas removal from natural gas using a commercially available supported amine sorbent. A MSFB is regarded as a promising adsorber type for deep sour gas removal to parts per million concentrations. A series of experiments was conducted using carbon dioxide as sour gas and nitrogen to mimic natural gas...
March 21, 2018: Industrial & Engineering Chemistry Research
Rafael Rodríguez-Mosqueda, Eddy A Bramer, Timo Roestenberg, Gerrit Brem
Potassium carbonate is a highly hygroscopic salt, and this aspect becomes important for CO2 capture from ambient air. Moreover, CO2 capture from ambient air requires adsorbents with a very low pressure drop. In the present work an activated carbon honeycomb monolith was coated with K2 CO3 , and it was treated with moist N2 to hydrate it. Its CO2 capture capacity was studied as a function of the temperature, the water content of the air, and the air flow rate, following a factorial design of experiments. It was found that the water vapor content in the air had the largest influence on the CO2 adsorption capacity...
March 14, 2018: Industrial & Engineering Chemistry Research
Anne Linhardt, Michael König, Aitziber Iturmendi, Helena Henke, Oliver Brüggemann, Ian Teasdale
Herein, we present the design, synthesis, and characterization of fully degradable, hybrid, star-branched dendritic polyols. First multiarmed polyphosphazenes were prepared as a star-branched scaffold which upon functionalization produced globular branched hydroxyl-functionalized polymers with over 1700 peripheral functional end groups. These polyols with unique branched architectures could be prepared with controlled molecular weights and relatively narrow dispersities. Furthermore, the polymers are shown to undergo hydrolytic degradation to low molecular weight degradation products, the rate of which could be controlled through postpolymerization functionalization of the phosphazene backbone...
March 14, 2018: Industrial & Engineering Chemistry Research
R M Abdilla, C B Rasrendra, H J Heeres
Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we report a kinetic study on the conversion of levoglucosan (LG) to GLC in water using sulfuric and acetic acid as the catalysts under a wide range of conditions in a batch setup. The effects of the initial LG loading (0...
March 7, 2018: Industrial & Engineering Chemistry Research
Derya Dokur, Seda Keskin
Metal-organic frameworks (MOFs) have been considered as highly promising materials for adsorption-based CO2 separations. The number of synthesized MOFs has been increasing very rapidly. High-throughput molecular simulations are very useful to screen large numbers of MOFs in order to identify the most promising adsorbents prior to extensive experimental studies. Results of molecular simulations depend on the force field used to define the interactions between gas molecules and MOFs. Choosing the appropriate force field for MOFs is essential to make reliable predictions about the materials' performance...
February 14, 2018: Industrial & Engineering Chemistry Research
Xiaoling Guo, Zhi Sun, Jilt Sietsma, Bart Blanpain, Muxing Guo, Yongxiang Yang
The dissolution of rare earth oxides in molten fluorides is a critical step in the preparation of the corresponding rare earth metals by oxide-fluoride electrolysis. However, quantitatively understanding the nature of dissolution, especially in the case of molten salts, is usually difficult to be achieved by postmortem characterization. In this paper, the dissolution behavior of Nd2 O3 particles in molten fluorides was studied via in situ observation with confocal scanning laser microscopy. Combining direct observation with thermodynamic analyses on the oxide dissolution, the rate-limiting step(s) and the effects of parameters like temperature, salt type, and composition on the dissolution rate are identified...
February 7, 2018: Industrial & Engineering Chemistry Research
Miftahul Ilmi, Muhammad Y Abduh, Arne Hommes, Jozef G M Winkelman, Chusnul Hidayat, Hero J Heeres
Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)- water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous centrifugal contactor separator (CCCS), the latter being used for integrated reaction and liquid-liquid separation. A fatty acid butyl ester yield up to 93% was obtained in the cascade when operated in a once-through mode...
January 17, 2018: Industrial & Engineering Chemistry Research
Arturo N Manzano Martínez, Kevin M P van Eeten, Jaap C Schouten, John van der Schaaf
This paper presents the micromixing times in a rotor-stator spinning disc reactor. Segregation indices are obtained at different rotational speeds performing the Villermaux-Dushman parallel-competitive reaction scheme. Consequently, the corresponding micromixing times are calculated using the engulfment model, while considering the self-engulfment effect. It was found that the segregation index decreases with an increasing disc speed. Furthermore, for the investigated operational conditions, the estimated micromixing times are in the range of 1...
November 15, 2017: Industrial & Engineering Chemistry Research
Johan van den Bergh, Igor V Babich, Paul O'Connor, Jacob A Moulijn
ZnCl2 hydrate, the main molten salt used in biomass conversion, combined with low concentration HCl is an excellent solvent for the dissolution and hydrolysis of the carbohydrates present in lignocellulosic biomass. The most recalcitrant carbohydrate, cellulose, is dissolved in a residence time less than 1 h under mild conditions without significant degradation. This technology is referred to as BIOeCON-solvent technology. Separation of the sugars from the solution is the main challenge. The earlier conclusion regarding the potential of zeolite beta for selective adsorption has been used as the basis of a scale-up study...
November 15, 2017: Industrial & Engineering Chemistry Research
Lalit S Gangurde, Guido S J Sturm, Tushar J Devadiga, Andrzej I Stankiewicz, Georgios D Stefanidis
The complexity and challenges in noncontact temperature measurements inside microwave-heated catalytic reactors are presented in this paper. A custom-designed microwave cavity has been used to focus the microwave field on the catalyst and enable monitoring of the temperature field in 2D. A methodology to study the temperature distribution in the catalytic bed by using a thermal camera in combination with a thermocouple for a heterogeneous catalytic reaction (methane dry reforming) under microwave heating has been demonstrated...
November 15, 2017: Industrial & Engineering Chemistry Research
Jenny N M Tan-Soetedjo, Henk H van de Bovenkamp, Ria M Abdilla, Carolus B Rasrendra, Jacob van Ginkel, Hero J Heeres
We here report experimental and kinetic modeling studies on the conversion of sucrose to levulinic acid (LA) and 5-hydroxymethylfurfural (HMF) in water using sulfuric acid as the catalyst. Both compounds are versatile building blocks for the synthesis of various biobased (bulk) chemicals. A total of 24 experiments were performed in a temperature window of 80-180 °C, a sulfuric acid concentration between 0.005 and 0.5 M, and an initial sucrose concentration between 0.05 and 0.5 M. Glucose, fructose, and HMF were detected as the intermediate products...
November 15, 2017: Industrial & Engineering Chemistry Research
Wim Buijs, Stijn de Flart
Several reactions, known from other amine systems for CO2 capture, have been proposed for Lewatit R VP OC 1065. The aim of this molecular modeling study is to elucidate the CO2 capture process: the physisorption process prior to the CO2 -capture and the reactions. Molecular modeling yields that the resin has a structure with benzyl amine groups on alternating positions in close vicinity of each other. Based on this structure, the preferred adsorption mode of CO2 and H2 O was established. Next, using standard Density Functional Theory two catalytic reactions responsible for the actual CO2 capture were identified: direct amine and amine-H2 O catalyzed formation of carbamic acid...
November 1, 2017: Industrial & Engineering Chemistry Research
Michael Welte, Kent Warren, Jonathan R Scheffe, Aldo Steinfeld
We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO2 and reforming of CH4 using concentrated radiation as the source of process heat. The 2 kWth solar reactor prototype utilizes a cavity receiver enclosing a vertical Al2 O3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s...
September 20, 2017: Industrial & Engineering Chemistry Research
Marcella Porru, Leyla Özkan
This work investigates the design of alternative monitoring tools based on state estimators for industrial crystallization systems with nucleation, growth, and agglomeration kinetics. The estimation problem is regarded as a structure design problem where the estimation model and the set of innovated states have to be chosen; the estimator is driven by the available measurements of secondary variables. On the basis of Robust Exponential estimability arguments, it is found that the concentration is distinguishable with temperature and solid fraction measurements while the crystal size distribution (CSD) is not...
August 30, 2017: Industrial & Engineering Chemistry Research
Mohammad Banaei, Jeroen Jegers, Martin van Sint Annaland, Johannes A M Kuipers, Niels G Deen
The hydrodynamics and heat transfer of cylindrical gas-solid fluidized beds for polyolefin production was investigated with the two-fluid model (TFM) based on the kinetic theory of granular flow (KTGF). It was found that the fluidized bed becomes more isothermal with increasing superficial gas velocity. This is mainly due to the increase of solids circulation and improvement in gas solid contact. It was also found that the average Nusselt number weakly depends on the gas velocity. The TFM results were qualitatively compared with simulation results of computational fluid dynamics combined with the discrete element model (CFD-DEM)...
August 2, 2017: Industrial & Engineering Chemistry Research
Ying Du, Boelo Schuur, Derk W F Brilman
The extraction yield of lipids from nonbroken Neochloris oleoabundans was maximized by using multiple extraction stages and using stressed algae. Experimental parameters that affect the extraction were investigated. The study showed that with wet algae (at least) 18 h extraction time was required for maximum yield at room temperature and a solvent/feed ratio of 1:1 (w/w). For fresh water (FW), nonstressed, nonbroken Neochloris oleoabundans , 13.1 wt % of lipid extraction yield (based on dry algae mass) was achieved, which could be improved to 61...
July 19, 2017: Industrial & Engineering Chemistry Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"