Add like
Add dislike
Add to saved papers

3D printed patient-specific fixation plates for the treatment of slipped capital femoral epiphysis: Topology optimization vs. conventional design.

Orthopedic plates are commonly used after osteotomies for temporary fixation of bones. Patient-specific plates have recently emerged as a promising fixation device. However, it is unclear how various strategies used for the design of such plates perform in comparison with each other. Here, we compare the biomechanical performance of 3D printed patient-specific bone plates designed using conventional computer-aided design (CAD) techniques with those designed with the help of topology optimization (TO) algorithms, focusing on cases involving slipped capital femoral epiphysis (SCFE). We established a biomechanical testing protocol to experimentally assess the performance of the designed plates while measuring the full-field strain using digital image correlation. We also created an experimentally validated finite element model to analyze the performance of the plates under physiologically relevant loading conditions. The results indicated that the TO construct exhibited higher ultimate load and biomechanical performance as compared to the CAD construct, suggesting that TO is a viable approach for the design of such patient-specific bone plates. The TO plate also distributed stress more evenly over the screws, likely resulting in more durable constructs and improved anatomical conformity while reducing the risk of screw and plate failure during cyclic loading. Although differences existed between finite element analysis and experimental testing, this study demonstrated that finite element modelling can be used as a reliable method for evaluating and optimizing plates for SCFE patients. In addition to enhancing the mechanical performance of patient-specific fixation plates, the utilization of TO in plate design may also improve the surgical outcome and decrease the recovery time by reducing the plate and incision sizes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app