Add like
Add dislike
Add to saved papers

Protective role of fullerenol and arginine C 60 fullerene against copper toxicity in cucumber.

Copper (Cu), when in excess, is one of the most toxic and hazardous metals to all living organisms, including plants. Engineered nanomaterials have the potential for increasing crop protection. However, the protective role of fullerenes (carbon-based nanoparticles with wide application in various areas) against Cu toxicity in plants is, so far, understudied. The present study investigated whether fullerenes can potentially alleviate Cu toxicity in plants (Cucumis sativus L.). Two water-soluble fullerene C60 derivatives were examined: fullerenol [C60 (OH)22-24 ] and arginine-functionalized fullerene [C60 (C6 H13 N4 O2 )8 H8 ], under controlled conditions using hydroponics. Plants treated with 15 μM of Cu exhibited typical symptoms of Cu toxicity: impaired growth, leaf chlorosis, reduced photosynthetic activity, nutritional imbalances, and enhanced lipid peroxidation. These symptoms were alleviated in the presence of fullerene derivatives with arginine C60 having the more pronounced effect. Improved cucumber Cu tolerance was attributable to Cu buffering in the root zone (roots and medium), which caused a dramatic decline in Cu transport towards leaves and the elimination of oxidative damage. The Cu removal efficacy of arginine C60 was much greater than that of fullerenol. These fullerenes acted in a dose-dependent manner and removed Cu selectively without significant modification of the bioavailability of other essential nutrients. Treatment with free arginine did not affect Cu immobilization or Cu toxicity. These results suggest that the surface chemistry of the fullerene core is important for the protection of plants under excessive Cu conditions. The information offered a new approach to preparing promising practical materials for alleviating Cu toxicity in plants with potential application in fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app