Add like
Add dislike
Add to saved papers

The dynamics of persistent organic pollutant (POP) transfer from female bottlenose dolphins (Tursiops truncatus) to their calves during lactation.

Persistent organic pollutants (POPs) are lipophilic compounds that can accumulate in high concentrations in the blubber of marine mammals, which are long-lived, top-level predators in their ecosystems. These compounds, which include DDTs, PCBs, PBDEs, HCHs, and CHLDs, impact mammalian health, including neurological effects, reduced immune system efficiency, and reproductive failure. POPs are transferred from females to their offspring during gestation and lactation, which have implications for the health of newborn marine mammals, particularly first-born offspring who receive higher concentrations. The dynamics of POP transfer during lactation have been studied in a few pinniped species, but there are no comparable studies on living cetaceans. Because life history strategies and behavior of lactating phocids differ from dolphins, a study on delphinid maternal transfer is warranted. To accomplish this, placenta and longitudinally collected blood and milk samples were taken concurrently from trained bottlenose dolphin, Tursiops truncatus, mother/calf pairs to assess the dynamics of maternal contaminant transfer. Initial POP levels in placenta, blood serum, and milk varied by individual and were related to the age and reproductive history of the females. Regardless of initial POP levels, maternal serum and milk concentrations decreased while calf serum POP levels increased over time. Pollutant transfer varied by POP class and by congener. Contaminant transfer efficiency to calves was most apparent for 4- to 6‑chlorine PCBs, DDT isomers p,p'-DDD, p,p'-DDT, o,p'-DDD, and o,p'-DDE, trans-nonachlor, cis-nonachlor, heptachlor epoxide, nonachlor III, and oxychlordane. By the end of the lactation period, calf serum POP levels were considerably greater than those of their mothers, particularly for compounds with fewer chlorines. POP levels were most biomagnified in the calf born to the primiparous female. These results provide critical information on one component of contaminant transfer in the marine ecosystem and for understanding potential risks of POP exposure to developing odontocete calves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app