Add like
Add dislike
Add to saved papers

Towards a Sustainable Chitosan-Based Composite Scaffold Derived from Scylla serrata Crab Chitosan for Bone Tissue Engineering.

Bone tissue engineering offers a novel therapy for repairing bone defects or fractures. However, it is becoming increasingly challenging because an ideal scaffold should possess a similar porous structure, high biocompatibility, and mechanical properties that match those of natural bone. To fabricate such a scaffold, biodegradable polymers are often preferred due to their degradability and tailored structure. This study involved the isolation of chitosan from crab shells ( Scylla serrata ) waste to use as a biomaterial in combination with hydroxyapatite (HAP) and collagen I (COL I) to mimic the extracellular matrix (ECM) composition of bone. After being cast and freeze-dried, it resulted in an interconnected porous scaffold with a porosity of 51.44% ± 2.28% and a pore diameter of 109.88 μm ± 49.84 μm. The swelling ratio of the crab scaffold was measured at 358.31% ± 25.23%, 363.04% ± 1.56%, and 370.11% ± 3.7% at 1, 3, and 6 hours, respectively. Consequently, the scaffold exhibited a degradation ratio of 8.17% ± 2.59%, 21.62% ± 5.43%, 22.59% ± 14.23%, and 23.12% ± 6.28% over the course of 1 to 4 weeks. It demonstrated excellent biocompatibility with MG-63 osteosarcoma cells. Although the compression strength was lower than 2-12 MPa, the crab scaffold can still be applied effectively for non-load-bearing bone defects. Crab shell waste emerges as a promising source of chitosan for tissue engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app