Add like
Add dislike
Add to saved papers

Quantitative 177 Lu SPECT/CT imaging for personalized dosimetry using a ring-shaped CZT-based camera.

EJNMMI Physics 2023 October 19
BACKGROUND: Dosimetry after radiopharmaceutical therapy with 177 Lu (177 Lu-RPT) relies on quantitative SPECT/CT imaging, for which suitable reconstruction protocols are required. In this study, we characterized for the first time the quantitative performance of a ring-shaped CZT-based camera using two different reconstruction algorithms: an ordered subset expectation maximization (OSEM) and a block sequential regularized expectation maximization (BSREM) combined with noise reduction regularization. This study lays the foundations for the definition of a reconstruction protocol enabling accurate dosimetry for patients treated with 177 Lu-RPT.

METHODS: A series of 177 Lu-filled phantoms were acquired on a StarGuide™ (GE HealthCare), with energy and scatter windows centred at 208 (± 6%) keV and 185 (± 5%) keV, respectively. Images were reconstructed with the manufacturer implementations of OSEM (GE-OSEM) and BSREM (Q.Clear) algorithms, and various combinations of iterations and subsets. Additionally, the manufacturer-recommended Q.Clear-based reconstruction protocol was evaluated. Quantification accuracy, measured as the difference between the SPECT-based and the radionuclide calibrator-based activity, and noise were evaluated in a large cylinder. Recovery coefficients (RCs) and spatial resolution were assessed in a NEMA IEC phantom with sphere inserts. The reconstruction protocols considered suitable for clinical applications were tested on a cohort of patients treated with [177 Lu]Lu-PSMA-I&T.

RESULTS: The accuracy of the activity from the cylinder, although affected by septal penetration, was < 10% for all reconstructions. Both algorithms featured improved spatial resolution and higher RCs with increasing updates at the cost of noise build-up, but Q.Clear outperformed GE-OSEM in reducing noise accumulation. When the reconstruction parameters were carefully selected, similar values for noise (~0.15), spatial resolution (~1 cm) and RCs were found, irrespective of the reconstruction algorithm. Analogue results were found in patients.

CONCLUSIONS: Accurate activity quantification is possible when imaging 177 Lu with StarGuide™. However, the impact of septal penetration requires further investigations. GE-OSEM is a valid alternative to the recommended Q.Clear reconstruction algorithm, featuring comparable performances assessed on phantoms and patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app