Add like
Add dislike
Add to saved papers

Elastohydrodynamic autoregulation in soft overlapping channels.

Physical Review. E 2023 September
Controlling fluid flow from an unsteady source is a challenging problem that is relevant in both living and man-made systems. Animals have evolved various autoregulatory mechanisms to maintain homeostasis in vital organs. This keeps the influx of nutrients essentially constant and independent of the perfusion pressure. Up to this point, the autoregulation processes have primarily been ascribed to active mechanisms that regulate vessel size, thereby adjusting the hydraulic conductance in response to, e.g., sensing of wall shear stress. We propose an alternative elastohydrodynamic mechanism based on contacting soft vessels. Inspired by Starling's resistor, we combine experiments and theory to study the flow of a viscous liquid through a self-intersecting soft conduit. In the overlapping region, the pressure difference between the two channel segments can cause one pipe segment to dilate while the other is compressed. If the tissue is sufficiently soft, this mode of fluid-structure interactions can lead to flow autoregulation. Our experimental observations compare well to a predictive model based on low-Reynolds-number fluid flow and linear elasticity. Implications for conduit arrangement and passive autoregulation in organs and limbs are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app