Add like
Add dislike
Add to saved papers

Noisy galvanic vestibular stimulation influences head stability in young healthy adults while standing on a moving platform.

Gait & Posture 2023 October 7
BACKGROUND: The ability to stand with eyes closed on a sinusoidal translational moving platform may be affected by spatial orientation owing to vestibular input information. Moreover, changes in the frequency of the moving platform may affect the sensory reweighting through somatosensory and vestibular sensations. However, it is unclear whether noisy galvanic vestibular stimulation (nGVS), which activates vestibular-related brain regions, affects the stability of individuals standing on a platform moving at different frequencies.

RESEARCH QUESTION: Do vestibular stimulation by nGVS and changes in the frequency of translationally moving platforms affect the standing stability of individuals?

METHODS: Thirty-one healthy young adult participants were provided both sham and nGVS interventions while they maintained a static standing position, with their eyes closed, on an anterior-posterior sinusoidal translation platform. The nGVS was adapted to an optimal intensity below the perceptual threshold (frequency band: 100-640 Hz), and the sham stimulus was adapted to 0 µA. The participants were randomly assessed for postural stability at 0.2, 0.6, and 1.2 Hz moving platform frequencies for 80 s each under both stimulus conditions. Postural stability was calculated as the root mean square (RMS) sway from head accelerations in the anteroposterior (AP) and mediolateral (ML) directions for 50 s between 20 and 70 s during the 80 s period, measured using an inertial sensor placed on the external occipital ridge.

RESULTS: nGVS significantly reduced the RMS sway of head acceleration in the AP direction compared with sham stimulation. Furthermore, nGVS significantly reduced RMS sway in the ML direction compared with sham stimulation at a 1.2 Hz moving platform oscillation.

SIGNIFICANCE: These findings suggest that postural adjustment by the vestibular system influences head stability on a moving platform at specific sinusoidal translation frequencies, suggesting that nGVS may reduce head sway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app