Add like
Add dislike
Add to saved papers

Event-related potentials reveal visual episodic memory deficits in patients with temporal lobe epilepsy.

OBJECTIVE: Temporal lobe epilepsy (TLE) patients usually suffer from impaired episodic memory (EM), but its underlying electrophysiologic mechanism and impacted cognitive performance are unclear. We aim to investigate the association between episodic memory reserve and physiological measures of memory workload in TLE patients using Event-related potentials (ERP).

METHODS: A change detection task with image stimuli assesses visual episodic memory. During the memory encoding and decoding phases, the ERP signals were analyzed from twenty-nine TLE patients (twelve with left TLE patients, seventeen with TLE), and thirty healthy controls. Given that EM is a complex process involving many fundamental cognitive processes, the amplitudes and latencies of EM-related ERP (FN400, late positive potential (LPC), and late posterior negativity (LPN)), and the ERP reflecting the fundamental processes (P100, N100, P200, and P300) were calculated. Then we used a three-by-two factorial design on the ERP metrics for interaction and main effects. The correlation analysis among Wechsler Memory Scales-Chinese Revision (WMS-RC) results, behavioral data, and the ERPs was carried out.

RESULTS: The TLE patients performed worse in WMS-RC and the memory task. The increased P200 and decreased P300 amplitudes were observed in the TLE patients, and LPN was abnormal in only LTLE patients. For EM-related components, differences were observed in both the LTLE and RTLE patients: the lack of the FN400 effect, the lack of the reversed LPC effect, and the reduced FN400. No significant inter-group difference was detected for the latencies of all the ERPs. Additionally, there were significant correlations among WMS-RC scores, behaviors, and some ERP amplitudes.

CONCLUSIONS: The impaired EM is linked to the increased P200 and decreased P300 amplitudes. LPN seems to be sensitive to left temporal lobe dysfunction. More importantly, the abnormal old or new effects of the FN400 and LPC, and the reduced FN400 amplitude might be associated with the visual EM deficit in the TLE patients. These findings may assist in the deep understanding of the EM disorder and the evaluation of the side effects of antiepileptic drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app