Add like
Add dislike
Add to saved papers

Renal-protective effect of Asparagus officinalis aqueous extract against lead-induced nephrotoxicity mouse model.

Lead is one of the cursed substances that threaten all human life. Lead poisoning can occur through food or water contaminations and it is hard to be detected. This incognito metal accumulates over time and resides in the liver, kidneys, and brain tissues leading to serious medical conditions, affecting organ functions, causing failure, kidney tubule degeneration, and destroying neuronal development. However, known metal chelators have bad negative effects. Asparagus officinalis (AO) is a promising herb; its root extract exhibited antioxidant, antiapoptotic, protective, and immunomodulatory activities. Inspired by those reasons, this study investigated to which extent Asparagus extract affected male mice's renal toxicity caused by lead acetate (LA) and antioxidant defense system. This work screened for its nephroprotective activity in four mouse groups: negative and positive control, LA group with renal injury, and diseased but pretreated mice with AO extract (AOE). Kidney index and kidney function biomarkers were evaluated. Antioxidant activities, lipid peroxidation, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), nitric oxide (NO), and reduced glutathione (GSH) were also tested. Furthermore, inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)), inducible nitric oxide synthase (iNOS), renal pro-apoptotic protein (Bax), antiapoptotic protein (Bcl-2), and caspase-3 levels were evaluated. The results showed that LA administration induced oxidative stress, renal inflammation, apoptosis, and renal histopathological alteration. However, due to its antioxidant activities, AOE was found to restrain oxidative stress, therefore preventing inflammation and apoptosis. Collectively, AOE perfectly clogged lead poisoning sneaking, stopped the bad deterioration, and succeeded to protect kidney tissues from toxicity, inflammation, and apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app