Add like
Add dislike
Add to saved papers

Macro, meso, micro and nanoplastics in horticultural soils in Argentina: Abundance, size distribution and fragmentation mechanism.

Soil contamination with plastics is a major worldwide concern. However, data on plastic pollution in horticultural soils from Latin America is scarce. Furthermore, there is limited information on the fragmentation process that plastics undergo in environmental conditions. In this study, we investigated the abundance of macro, meso, micro and nano plastics in a previously studied horticultural soil (2015) from Buenos Aires, that has not been used for any productive activity since. Although the mass of macroplastics was conserved, the number of plastic fragments per square meter increased significantly, indicating a possible natural fragmentation process. Black polyethylene (PE) mulch film was the most abundant plastic found. For this material, when considering the mass of plastic fragments per square meter, the relative abundance was, in decreasing order: macroplastics (65.1-79.1 %) > mesoplastics (15.6-24.8 %) > microplastics (5.3-12.4 %) > nanoplastics (0.1 %). However, when considering the number of plastic items per square meter, the order was: microplastics (2383-3815) > mesoplastics (1019-1076) > nanoplastics (509-550) > macroplastics (25-46). The size distribution of plastic debris was analyzed using the natural logarithm of abundance versus the square root of the mean decile area, with good linear correlations (0.7749 < R2  < 0.9785). These results provide evidence for an ongoing dynamic fragmentation process (Mott model). We hypothesize that the breakdown of plastic into smaller pieces could be explained by a random fragmentation process based on soil volume changes between natural hydration/dehydration states. These data suggest that soil under natural conditions could act as an 'environmental plastic grinder'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app