Add like
Add dislike
Add to saved papers

Molecular Simulations of Liquid Jet Explosions and Shock Waves Induced by X-Ray Free-Electron Lasers.

Physical Review Letters 2023 September 30
X-ray free-electron lasers (XFELs) produce x-ray pulses with high brilliance and short pulse duration. These properties enable structural investigations of biomolecular nanocrystals, and they allow one to resolve the dynamics of biomolecules down to the femtosecond timescale. Liquid jets are widely used to deliver samples into the XFEL beam. The impact of the x-ray pulse leads to vaporization and explosion of the liquid jet, while the expanding gas triggers the formation of shock wave trains traveling along the jet, which may affect biomolecular samples before they have been probed. Here, we used molecular dynamics simulations to reveal the structural dynamics of shock waves after an x-ray impact. Analysis of the density and temperature in the jet revealed shock waves that form close to the explosion center, travel along the jet with supersonic velocities, and decay exponentially with an attenuation length proportional to the jet diameter. A trailing shock wave formed after the first shock wave, similar to the shock wave trains in experiments. High shock wave velocities in our simulations are compatible with the phenomenon of "fast sound," as emerging at large sound frequencies. Although using purely classical models in the simulations, the resulting explosion geometry and shock wave dynamics closely resemble experimental findings, and they highlight the importance of atomistic details for modeling shock wave attenuation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app