Add like
Add dislike
Add to saved papers

GSH-activatable camptothecin prodrug-loaded gold nanostars coated with hyaluronic acid for targeted breast cancer therapy via multiple radiosensitization strategies.

Breast cancer has overtaken lung cancer to rank as the top malignant tumor in terms of incidence. Herein, a gold nanostar (denoted as AuNS) is used for loading disulfide-coupled camptothecin-fluorophore prodrugs (denoted as CPT-SS-FL) to form a nanocomposite of AuNS@CPT-SS-FL (denoted as AS), which, in turn, is further encapsulated with hyaluronic acid (HA) to give the final nanoplatform of AuNS@CPT-SS-FL@HA (denoted as ASH). ASH effectively carries the prodrug and targets the CD44 receptor on the surface of tumor cells. The endogenously overexpressed glutathione (GSH) in tumor cells breaks the disulfide bond to activate the prodrug and release the radiosensitizer drug camptothecin (CPT) and the fluorescence imaging reagent rhodamine derivative as a fluorophore (FL). The released FL can track the precise release position of the radiosensitizer camptothecin in tumor cells in real time. The AuNS has strong X-ray absorption and deposition ability due to the high atomic coefficient of elemental Au ( Z = 79). At the same time, the AuNS can alleviate the tumor microenvironment (TME) hypoxia through its mild photothermal therapy (PTT). Therefore, through the multiple radiosensitizing effects of GSH depletion, the high atomic coefficient of Au, and hypoxia alleviation, accompanied by the radiosensitizer camptothecin, the designed ASH nanoplatform can effectively induce strong immunogenic cell death (ICD) at the tumor site via radiosensitizing therapy combined with PTT. This work provides a new way of constructing a structurally compact and highly functionalized hierarchical system toward efficient breast cancer treatment through ameliorating the TME with multiple modalities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app