Add like
Add dislike
Add to saved papers

Artificial neural network identification of exercise expiratory flow-limitation in adults.

Scientific Reports 2023 October 12
Identification of ventilatory constraint is a key objective of clinical exercise testing. Expiratory flow-limitation (EFL) is a well-known type of ventilatory constraint. However, EFL is difficult to measure, and commercial metabolic carts do not readily identify or quantify EFL. Deep machine learning might provide a new approach for identifying EFL. The objective of this study was to determine if a convolutional neural network (CNN) could accurately identify EFL during exercise in adults in whom baseline airway function varied from normal to mildly obstructed. 2931 spontaneous exercise flow-volume loops (eFVL) were placed within the baseline maximal expiratory flow-volume curves (MEFV) from 22 adults (15 M, 7 F; age, 32 yrs) in whom lung function varied from normal to mildly obstructed. Each eFVL was coded as EFL or non-EFL, where EFL was defined by eFVLs with expired airflow meeting or exceeding the MEFV curve. A CNN with seven hidden layers and a 2-neuron softmax output layer was used to analyze the eFVLs. Three separate analyses were conducted: (1) all subjects (n = 2931 eFVLs, [GRALL ]), (2) subjects with normal spirometry (n = 1921 eFVLs [GRNORM ]), (3) subjects with mild airway obstruction (n = 1010 eFVLs, [GRLOW ]). The final output of the CNN was the probability of EFL or non-EFL in each eFVL, which is considered EFL if the probability exceeds 0.5 or 50%. Baseline forced expiratory volume in 1 s/forced vital capacity was 0.77 (94% predicted) in GRALL , 0.83 (100% predicted) in GRNORM , and 0.69 (83% predicted) in GRLOW . CNN model accuracy was 90.6, 90.5, and 88.0% in GRALL , GRNORM and GRLOW , respectively. Negative predictive value (NPV) was higher than positive predictive value (PPV) in GRNORM (93.5 vs. 78.2% for NPV vs. PPV). In GRLOW , PPV was slightly higher than NPV (89.5 vs. 84.5% for PPV vs. NPV). A CNN performed very well at identifying eFVLs with EFL during exercise. These findings suggest that deep machine learning could become a viable tool for identifying ventilatory constraint during clinical exercise testing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app