Add like
Add dislike
Add to saved papers

ATXN3 deubiquitinates YAP1 to promote tumor growth.

The ubiquitin-specific peptidase Ataxin-3 (ATXN3) has emerged as a potential oncogene in a variety of human cancers. However, the molecular mechanisms underlying how ATXN3 achieves its tumorigenic functions remain largely undefined. Herein, we report that targeted deletion of the ATXN3 gene in cancer cells by the CRISPR-Cas9 system resulted in decreased protein expression of Yes-associated protein 1 (YAP1) without altering its mRNA transcription. Interestingly, genetic ATXN3 suppression selectively inhibited the expression levels of YAP1 target genes including the connective tissue growth factor ( Ctgf ) and cysteine-rich angiogenic inducer 61 ( Cyr61 ), both of which have important functions in cell adhesion, migration, proliferation and angiogenesis. Consequently, ATXN3 suppression resulted in reduced cancer cell growth and migration, which can also be largely rescued by YAP1 reconstitution. At the molecular level, ATNX3 interacts with the WW domains of YAP1 to protect YAP1 from ubiquitination-mediated degradation. Immunohistology analysis revealed a strong positive correlation between ATXN3 and YAP1 protein expression in human breast and pancreatic cancers. Collectively, our study defines ATXN3 as a previously unknown YAP1 deubiquitinase in tumorigenesis and provides a rationale for ATXN3 targeting in antitumor chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app