Add like
Add dislike
Add to saved papers

High latitude Northern bats (Eptesicus nilssonii) reveal adaptations to both high and low ambient temperatures.

Insectivorous bats at northern latitudes need to cope with long periods of no food for large parts of the year. Hence, bats which are resident at northern latitudes throughout the year will need to undergo a long hibernation season and a short reproductive season where foraging time is limited by extended daylight periods. Eptesicus nilssonii is the northernmost occurring bat species worldwide and hibernates locally when ambient temperatures (Ta) limit prey availability. Therefore, we investigated the energy spent maintaining normothermy at different Tas, as well as how much bats limit energy expenditure while in torpor. We found that, despite being exposed to Ta as low as 1.1°C, bats did not increase torpid metabolic rate, thus indicating that E. nilssonii can survive and hibernate at low ambient temperatures. Furthermore, we found a lower critical temperature (Tlc) of 27.8°C, which is lower than in most other vespertilionid bats, and we found no indication of any metabolic response to Tas up to 37.1°C. Interestingly, carbon dioxide production increased with increasing Ta above the Tlc, presumably caused by a release of retained CO2 in bats that remained in torpor for longer and aroused at Ta above the Tlc. Our results indicate that E. nilssonii can thermoconform at near-freezing Ta, and hence maintain longer torpor bouts with limited energy expenditure, yet also cope with high Tawhen sun-exposed in roosts during long summer days. These physiological traits will likely enable the species to cope with ongoing and predicted climate change.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app