Add like
Add dislike
Add to saved papers

Inhibitory effect of telocyte-induced M1 macrophages on endometriosis: Targeting angiogenesis and invasion.

Acta Histochemica 2023 October 8
PURPOSE: Telocytes (TCs), a novel type of stromal cells found in tissues, induce macrophage differentiation into classically activated macrophages (M1) types and enhance their phagocytic function. The purpose of this study was to investigate the inhibitory effects of TC-induced M1 macrophages on endometriosis (EMs).

METHODS: mouse uterine primary TCs and endometrial stromal cells (ESCs) were isolated and identified using double immunofluorescence staining. For the in vitro study, ESCs were treated with TC-induced M1 macrophages, and the vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and nuclear factor kappa B (NF-κb) genes were identified by quantitative real-time PCR (qRT-PCR) or western blotting (WB). For the in vivo study, an EMs mouse model received TC-conditioned medium (TCM) via abdominal administration, and characterized the inhibitory effects on growth (lesion weight, volume, and pathology), tissue-resident macrophages differentiation by immunostaining, angiogenic capacity (CD31 and VEGF), invasive capacity (MMP9), and NF-κb expression within EMs lesions.

RESULTS: immunofluorescent staining showed that uterine TCs expressed CD34+ and vimentin+, whereas ESCs expressed vimentin+ and cytokeratin-. At the cellular level, TC-induced M1 macrophages can significantly inhibit the expression of VEGF and MMP9 in ESCs through WB or qRT-PCR, possibly by suppressing the NF-κb pathway. The in vivo study showed that macrophages switch from the alternatively activated macrophages (M2) in untreated EMs lesions to the M1 subtype after TCM exposure. Thereby, TC-induced M1 macrophages contributed to the inhibition of EMs lesions. More importantly, this effect may be achieved by suppressing the expression of NF-κb to inhibit angiogenesis (CD31 and VEGF) and invasion (MMP9) in the tissue.

CONCLUSION: TC-induced M1 macrophages play a prevailing role in suppressing EMs by inhibiting angiogenic and invasive capacity through the NF-κb pathway, which provides a promising therapeutic approach for EMs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app