Add like
Add dislike
Add to saved papers

Design and Mechanism Insight of Monodispersed AuCuPt Alloy Nanozyme with Antitumor Activity.

ACS Nano 2023 October 10
The abrogation of the self-adaptive redox evolution of tumors is promising for improving therapeutic outcomes. In this study, we designed a trimetallic alloy nanozyme AuCuPt-PpIX (ACPP), which mimics up to five naturally occurring enzymes: glucose oxidase (GOD), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione peroxidase (GPx). Facilitated by these enzyme-mimicking traits, the constructed ACPP nanozymes can not only disrupt the established redox homeostasis in tumors through a series of enzymatic cascade reactions but also achieve cyclic regeneration of the relevant enzyme substrates. Density functional theory (DFT) calculations have theoretically explained the synergistic effect of multimetallic doping and the possible mechanism of enzymatic catalysis. The doped Cu and Pt sites are conducive to the adsorption, activation, and dissociation of reactant molecules, whereas the Au sites are conducive to desorption, which significantly improves catalytic efficiency via a synergistic effect. Additionally, ACPP nanozymes can improve the effect of protoporphyrin (PpIX)-enabled sonodynamic therapy (SDT) by alleviating hypoxia and initiating ferroptosis by inducing lipid peroxidation (LPO) and inhibiting GPX4 activity, thus achieving multimodal synergistic therapy. This study presents a typical paradigm to enable the use of multimetallic alloy nanozymes for the treatment of tumor cells with self-adaptive properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app