Add like
Add dislike
Add to saved papers

Strongyloides stercoralis infection reduces Fusicatenibacter and Anaerostipes in the gut and increases bacterial amino-acid metabolism in early-stage chronic kidney disease.

Heliyon 2023 September
Understanding gut bacterial composition and proteome changes in patients with early-stage chronic kidney disease (CKD) could lead to better methods of controlling the disease progression. Here, we investigated the gut microbiome and microbial functions in patients with S. stercoralis infection (strongyloidiasis) and early-stage CKD. Thirty-five patients with early stages (1-3) of CKD were placed in two groups matched for population characteristics and biochemical parameters, 12 patients with strongyloidiasis in one group and 23 uninfected patients in the other. From every individual, a sample of their feces was obtained and processed for 16S rRNA sequencing and metaproteomic analysis using tandem liquid chromatography-mass spectrometry (LC-MS/MS). Strongyloides stercoralis infection per se did not significantly alter gut microbial diversity. However, certain genera ( Bacteroides , Faecalibacterium , Fusicatenibacter , Sarcina , and Anaerostipes ) were significantly more abundant in infection-free CKD patients than in infected individuals. The genera Peptoclostridium and Catenibacterium were enriched in infected patients. Among the significantly altered genera, Fusicatenibacter and Anaerostipes were the most correlated with renal parameters. The relative abundance of members of the genus Fusicatenibacter was moderately positively correlated with estimated glomerular filtration rate (eGFR) (r = 0.335, p = 0.049) and negatively with serum creatinine (r = -0.35, p = 0.039). Anaerostipes , on the other hand, showed a near-significant positive correlation with eGFR (r = 0.296, p = 0.084). Individuals with S. stercoralis infection had higher levels of bacterial proteins involved in amino-acid metabolism. Analysis using STITCH predicted that bacterial amino-acid metabolism may also be involved in the production of colon-derived uremic toxin (indole), a toxic substance known to promote CKD. Strongyloides stercoralis infection is, therefore, associated with reduced abundance of Fusicatenibacter and Anaerostipes (two genera possibly beneficial for kidney function) and with increased bacterial amino-acid metabolism in the early-stages of CKD, potentially producing uremic toxin. This study provides useful information for prevention of progression of CKD beyond the early stages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app