Add like
Add dislike
Add to saved papers

Kurarinone exerts anti-inflammatory effect via reducing ROS production, suppressing NLRP3 inflammasome, and protecting against LPS-induced sepsis.

Kurarinone, a major lavandulyl flavanone found in the roots of Sophora flavescens aiton, has been reported to exhibit anti-inflammatory and anti-oxidative activities in lipopolysaccharide (LPS)-induced macrophages; however, the effects of kurarinone on the activation of NLRP3 inflammasome and the protective effects against sepsis have not been well investigated. In this study, we aimed to investigate the impacts of kurarinone on NLRP3 inflammasome activation in lipopolysaccharide (LPS)-induced macrophages and its protective effects against sepsis in vivo. Secretion of pro-inflammatory cytokines, activation of MAPKs and NF-κB signaling pathways, formation of NLRP3 inflammasome, and production of reactive oxygen species (ROS) by LPS-induced macrophages were examined; additionally, in vivo LPS-induced endotoxemia model was used to investigate the protective effects of kurarinone in sepsis-induced damages. Our experimental results demonstrated that kurarinone inhibited the expression of iNOS and COX-2, suppressed the phosphorylation of MAPKs, attenuated the production of TNF-α, IL-6, nitric oxide (NO) and ROS, repressed the activation of the NLRP3 inflammasome, and impeded the maturation and secretion of IL-1β and caspase-1. Furthermore, the administration of kurarinone attenuated the infiltration of neutrophils in the lung, kidneys and liver, reduced the expression of organ damage markers, and increased the survival rate in LPS-challenged mice. Collectively, our study demonstrated that kurarinone can protect against LPS-induced sepsis damage and exert anti-inflammatory effects via inhibiting MAPK/NF-κB pathways, attenuating NLRP3 inflammasome formation, and preventing intracellular ROS accumulation, suggesting that kurarinone might have potential for treating sepsis and inflammation-related diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app