Add like
Add dislike
Add to saved papers

New opto-electro-mechanical sensor for two-dimensions dosimetry based on radiochromic films.

Scientific Reports 2023 October 6
This work presents the validation of a new Opto‒Electro-Mechanical (MOEM) system consisting of a matrix of photodetectors for two-dimensional dosimetry evaluation with radiochromic films. The proposed system is based on a 5 × 10 matrix of photodetectors controlled by both in-house electronic circuit and graphical user interface, which enables optical measurements directly. We present the first tests performed in an X-ray machine and 137 Cs source with that array by using Gafchromic EBT3 films. We obtained similar results than with a standard method (e.g. flat-bed scanner). Results were compared with Monte Carlo simulations and very good agreement was found. Results show the feasibility of using this system for dose evaluations. To the best of our knowledge, this is the first MOEM sensor for radiotherapy. Further developments are ongoing to create an advanced 16 × 16 LDRs system covering 1.6 cm × 1.6 cm with a 1 mm of spatial resolution. We point to develop a portable dosimetry tool delivering dose maps in real time to improve the clinical application of radiochromic films.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app