Add like
Add dislike
Add to saved papers

Analysis of periodic pulsating blood flow of fractional Maxwell power-law fluid in carotid artery with elastic vessel wall.

Hemodynamic analysis reveals a highly significant effect on the prevention, diagnosis, and treatment of human vascular diseases. This article goes deeply into the periodic pulsatile blood flow in the carotid artery with an elastic vessel wall. In view of blood rheological experimental data, the constitutive equation of fractional Maxwell power-law fluid with yield stress, which can describe the four characteristics of yield stress, viscoelasticity, shear thinning, and thixotropy is established. Meanwhile, drawing support from the data of pulsatile flow, the finite Fourier series of pressure gradient with a period of 1 s has been proposed. Leading into Hooke's law can build the fluid-structure coupling boundary condition of blood flow and elastic vessel wall. The numerical solutions are got hold of finite difference method integrated with the newly developed L1-algorithm, and their convergence and stability of which are verified. The axial velocities of blood under different constitutive relationships are compared. The results throw light that other constitutive relationships underestimate the velocity of blood. Furthermore, the flow rate and wall shear stress on different fluid are calculated. It can be concluded that compared with Bingham fluid, the maximum and minimum flow rate/wall shear stress of fractional Maxwell power-law fluid with yield stress increases by 19% and 32%, respectively. The flow rate lags behind the pressure gradient and has time delay effect, on the contrary, the velocity of blood vessel wall is keeping pace with the pressure gradient. The effects of relevant physical parameters on velocity are discussed. In addition, the spatiotemporal distribution of blood flow in cerebral artery and femoral artery are analyzed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app