Add like
Add dislike
Add to saved papers

Noradrenergic alterations in Parkinson's disease: a combined 11C-yohimbine PET/neuromelanin MRI study.

Brain 2023 October 4
Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluate two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI and the density of α2-adrenergic receptors (ARs) with PET using [11C]yohimbine. Thirty patients with Parkinson's disease and thirty age- and sex-matched healthy control subjects were included. Patient's symptoms characteristics were assessed using the MDS-UPDRS scale. Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared to controls, and diminished [11C]yohimbine binding in widespread cortical regions including the motor cortex as well as in the insula, the thalamus and the putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-ARs availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These findings highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-ARs degenerations were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunctions that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app