Add like
Add dislike
Add to saved papers

Vitamin A and vitamin D induced nuclear hormone receptor activation and its impact on B cell differentiation and immunoglobulin production.

Immunology Letters 2023 September 28
Vitamin A and vitamin D metabolites are ligands to nuclear receptors - namely RAR, RXR and VDR. The activation of these receptors in human B cells impacts B cell maturation and function. In this review, we discuss how 9-cis retinoic acid (9cRA) and 1,25-dihydroxyvitamin D3 (calcitriol) individually or in conjunction, signal through their nuclear receptors and thereby impact B cell differentiation, immunoglobulin class switching to IgA at the expense of IgE, and also B cell migration and homing. Impact of the vitamin metabolites individually on B cell survival factors are well elucidated, be it the regulation of BAFF and APRIL, the induction of TGF-β or suppression of NF-κB. Very little is known about the impact of 9cRA and calcitriol together on B cells. Recently our group revealed that 9cRA and calcitriol together in the context of the B cell differentiation, induces naïve B cell differentiation into IgA+ plasmablasts, the functional and underlying molecular regulations however require further investigation. In conclusion, the conjunctional impact of these nuclear receptor ligands on B cell functionality is important to better understand B cell dependent clinical outcomes in allergy and autoimmunity. Within this review, we hypothesise that a balance between both vitamins is of utmost importance to provide a robust humoral immune response and a better treatment of disorders characterised by dysregulated immune responses such as IgE-dependent allergy or autoimmunity such as lupus erythematosus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app