Add like
Add dislike
Add to saved papers

Alkaline vents recreated in two dimensions to study pH gradients, precipitation morphology, and molecule accumulation.

Science Advances 2023 September 30
Alkaline vents (AVs) are hypothesized to have been a setting for the emergence of life, by creating strong gradients across inorganic membranes within chimney structures. In the past, three-dimensional chimney structures were formed under laboratory conditions; however, no in situ visualization or testing of the gradients was possible. We develop a quasi-two-dimensional microfluidic model of AVs that allows spatiotemporal visualization of mineral precipitation in low-volume experiments. Upon injection of an alkaline fluid into an acidic, iron-rich solution, we observe a diverse set of precipitation morphologies, mainly controlled by flow rate and ion concentration. Using microscope imaging and pH-dependent dyes, we show that finger-like precipitates can facilitate formation and maintenance of microscale pH gradients and accumulation of dispersed particles in confined geometries. Our findings establish a model to investigate the potential of gradients across a semipermeable boundary for early compartmentalization, accumulation, and chemical reactions at the origins of life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app