Add like
Add dislike
Add to saved papers

Exploring characteristics of placental transcriptome and cord serum metabolome associated with low birth weight in Kele pigs.

The neonate with low birth weight (LBW) resulted from intrauterine growth retardation (IUGR) exists a substantial risk of postpartum death. Placental insufficiency is responsible for inadequate fetal growth; however, the pathological mechanisms of placental dysfunction-induced IUGR in pigs remain unclear. In this study, the characteristics of placental morphology, placental transcriptome, and cord serum metabolome were explored between the Kele piglets with LBW and the ones with normal birth weight (NBW). Results showed that LBW was a common occurrence in Kele piglets. The LBW placentas showed inferior villus development and lower villi density compared to NBW placentas. There were 1024 differentially expressed genes (DEGs) identified by transcriptome analysis between the LBW and NBW placentas, of which 218 and 806 genes were up- and down-regulated in the LBW placentas, respectively. PPI network analysis showed that ITGB2, CD4, IL6, ITGB3, LCK, RAC2, CD8A, JAK3, TYROBP, and CXCR4 were hub genes in all DEGs. From GO and KEGG enrichment analysis, DEGs were primarily enriched in immunological response, cell adhesion, immune response, cytokine-cytokine receptor interaction, and PI3K-Akt signaling pathway. By using metabolomic analysis, a total of 115 differential metabolites in the cord serum of LBW and NBW piglets were found, mostly linked to amino acid metabolism and sphingolipid metabolism. In comparison to NBW piglets, LBW piglets had lower levels of arginine, isoleucine, and aspartic acid in the cord. Taken together, these data revealed dysplasia of the placental villus, insufficient supply of nutrients, and abnormal immune function of the placenta may be associated with the occurrence and development of LBW in Kele pigs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app