Add like
Add dislike
Add to saved papers

A Shortcut from Genome to Drug: The Employment of Bioinformatic Tools to Find New Targets for Gastric Cancer Treatment.

Pharmaceutics 2023 September 13
Gastric cancer (GC) is a highly heterogeneous, complex disease and the fifth most common cancer worldwide (about 1 million cases and 784,000 deaths worldwide in 2018). GC has a poor prognosis (the 5-year survival rate is less than 20%), but there is an effort to find genes highly expressed during tumor establishment and use the related proteins as targets to find new anticancer molecules. Data were collected from the Gene Expression Omnibus (GEO) bank to obtain three dataset matrices analyzing gastric tumor tissue versus normal gastric tissue and involving microarray analysis performed using the GPL570 platform and different sources. The data were analyzed using the GEPIA tool for differential expression and KMPlot for survival analysis. For more robustness, GC data from the TCGA database were used to corroborate the analysis of data from GEO. The genes found in in silico analysis in both GEO and TCGA were confirmed in several lines of GC cells by RT-qPCR. The AlphaFold Protein Structure Database was used to find the corresponding proteins. Then, a structure-based virtual screening was performed to find molecules, and docking analysis was performed using the DockThor server. Our in silico and RT-qPCR analysis results confirmed the high expression of the AJUBA , CD80 and NOLC1 genes in GC lines. Thus, the corresponding proteins were used in SBVS analysis. There were three molecules, one molecule for each target, MCULE-2386589557-0-6, MCULE-9178344200-0-1 and MCULE-5881513100-0-29. All molecules had favorable pharmacokinetic, pharmacodynamic and toxicological properties. Molecular docking analysis revealed that the molecules interact with proteins in critical sites for their activity. Using a virtual screening approach, a molecular docking study was performed for proteins encoded by genes that play important roles in cellular functions for carcinogenesis. Combining a systematic collection of public microarray data with a comparative meta-profiling, RT-qPCR, SBVS and molecular docking analysis provided a suitable approach for finding genes involved in GC and working with the corresponding proteins to search for new molecules with anticancer properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app