Add like
Add dislike
Add to saved papers

Transplantation of iPSC-derived airway epithelia with a collagen scaffold into the nasal cavity.

The nasal cavity is covered with respiratory epithelia, including ciliated cells that eliminate foreign substances trapped in the mucus. In hereditary diseases such as primary ciliary dyskinesia and cystic fibrosis, respiratory epithelial functions are irreversibly impaired; however, no radical treatment has been established yet. Thus, we considered that the transplantation of normal airway epithelia into the nasal epithelia is one of the strategies that could lead to radical treatment in the future. In our previous study, human induced pluripotent stem cell-derived airway epithelia (hiPSC-AE) on the vitrigel membrane were transplanted into the scraped area of the nasal septal mucosa of nude rats. Although human-derived ciliated cells, club cells, and basal cells were observed, they were located in the cysts within the submucosal granulation tissue but not in the nasal mucosal epithelia and the transplanted cells may not contribute to the function of the nasal mucosa with this condition. Therefore, to achieve more functional transplantation, we prepared the graft differently in this study by wrapping the collagen sponge in hiPSC-AE on the vitrigel membrane. As a result, we found the transplanted cells surviving in the nasal mucosal epithelia. These results suggest that hiPSC-AE transplanted into the nasal cavity could be viable in the nasal mucosa. In addition, our method leads to the establishment of nasal mucosa-humanized rats which are used for the development of the drugs and therapeutic methods for hereditary diseases of nasal respiratory epithelia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app