Add like
Add dislike
Add to saved papers

Additive Strategy Enhancing In Situ Polymerization Uniformity for High-Voltage Sodium Metal Batteries.

Small 2023 September 27
In situ polymerization to prepare quasi-solid electrolyte has attracted wide attentions for its advantage in achieving intimate electrode-electrolyte contact and the high process compatibility with current liquid batteries; however, gases can be generated during polymerization process and remained in the final electrolyte, severely impairing the electrolyte uniformity and electrochemical performance. In this work, an in situ polymerized poly(vinylene carbonate)-based quasi-solid electrolyte for high-voltage sodium metal batteries (SMBs) is demonstrated, which contains a novel multifunctional additive N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). MSTFA as high-efficient plasticizer diminishes residual gases in electrolyte after polymerization; the softer and homogeneous electrolyte enables much faster ionic conduction. The HF/H2 O scavenge effect of MSTFA mitigates the corrosion of free acid to cathode and interfacial passivating layers, enhancing the cycle stability under high voltage. As a result, the 4.4 V Na||Na3 V2 (PO4 )2 F3 cell employing the optimized electrolyte possesses an initial discharge capacity of 112.0 mAh g-1 and a capacity retention of 91.3% after 100 cycles at 0.5C, obviously better than those of its counterparts without MSTFA addition. This work gives a pioneering study on the gas residue phenomenon in in situ polymerized electrolytes, and introduces a novel multifunctional silane additive that effectively enhances electrochemical performance in high-voltage SMBs, showing practical application significance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app