Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cutaneous wound healing promoted by topical administration of heat-killed Lactobacillus plantarum KB131 and possible contribution of CARD9-mediated signaling.

Scientific Reports 2023 September 24
Optimal conditions for wound healing require a smooth transition from the early stage of inflammation to proliferation, and during this time alternatively activated (M2) macrophages play a central role. Recently, heat-killed lactic acid bacteria (LAB), such as Lactobacillus plantarum (L. plantarum) have been reported as possible modulators affecting the immune responses in wound healing. However, how signaling molecules regulate this process after the administration of heat-killed LAB remains unclear. In this study, we examined the effect of heat-killed L. plantarum KB131 (KB131) administration on wound healing and the contribution of CARD9, which is an essential signaling adaptor molecule for NF-kB activation upon triggering through C-type lectin receptors, in the effects of this bacterium. We analyzed wound closure, histological findings, and inflammatory responses. We found that administration of KB131 accelerated wound closure, re-epithelialization, granulation area, CD31-positive vessels, and α-SMA-positive myofibroblast accumulated area, as well as the local infiltration of leukocytes. In particular, M2 macrophages were increased, in parallel with CCL5 synthesis. The acceleration of wound healing responses by KB131 was canceled in CARD9-knockout mice. These results indicate that the topical administration of KB131 accelerates wound healing, accompanying increased M2 macrophages, which suggests that CARD9 may be involved in these responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app