Journal Article
Review
Add like
Add dislike
Add to saved papers

Effect of blood flow restriction with low-load exercise on muscle damage in healthy adults: A systematic review of randomized controlled trials.

INTRODUCTION: Blood flow restriction (BFR) is a relatively new rehabilitative technique and low-load exercise combined with BFR (LL-BFR) can increase muscle strength and muscle mass. However, it is currently unknown whether LL-BFR causes muscle damage. Therefore, the aim of this study is to investigate the effects of LL-BFR on muscle damage and provide recommendations for sports training and physical exercise.

MATERIALS AND METHODS: A systematic search was conducted using PubMed, Web of Science, Medline, Cochrane Library and Physiotherapy Evidence Database (PEDro) with a cut-off of March 2022. Randomized controlled trials (RCTs) and English-language studies were selected. Two independent assessors used the PEDro scoring scale to evaluate the methodological quality and risk of bias of the included studies.

RESULTS: Of the 2935 articles identified, 15 RCTs were included in this systematic review. Two studies demonstrated that LL-BFR could induce muscle damage in healthy individuals; however, two studies presented contrasting findings in the short term. Four studies found that no muscle damage occurred after LL-BFR in the long term. The remaining seven articles showed that it was unclear if LL-BFR could cause muscle damage, regardless of whether these participants were trained or not.

CONCLUSION: Although LL-BFR may induce muscle damage within 1 week, it will help gain long-term muscle strength and muscle hypertrophy. However, the lack of sufficient evidence on the effect of LL-BFR on muscle damage in clinical practice warrants additional RCTs with large sample sizes in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app