Add like
Add dislike
Add to saved papers

Dysregulation of PLOD2 Promotes Tumor Metastasis and Invasion in Hepatocellular Carcinoma.

BACKGROUND AND AIMS: Metastasis is a major factor associated with high recurrence and mortality in hepatocellular carcinoma (HCC) patients while the underlying mechanism of metastasis remains elusive. In our study, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was shown to be involved in the process of metastasis in HCC.

METHODS: The Cancer Genome Atlas (TCGA) database and HCC tissue microarrays were used to evaluate the expression of genes. In vitro migration, invasion, in vivo subcutaneous tumor model and in vivo lung metastasis assays were used to determine the role of PLOD2 in tumor growth and metastasis in HCC. RNA sequencing and gene set enrichment analysis were performed to uncover the downstream factor of PLOD2 in HCC cells. A luciferase reporter assay was performed to evaluate the interaction between PLOD2 and interferon regulatory factor 5 (IRF5).

RESULTS: The expression of PLOD2 in HCC tissues was higher than that in adjacent tissues, and increased PLOD2 expression was often found in advanced tumors and was correlated with poor prognosis in HCC patients. In vitro experiments, knockdown of PLOD2 reduced the migration and invasion of human HCC cells. Loss of PLOD2 suppressed human HCC growth and metastasis in a subcutaneous tumor model and a lung metastasis model. Baculoviral IAP repeat containing 3 (BIRC3) was proven to be the downstream factor of PLOD2 in human HCC cells. In addition, PLOD2 was transcriptionally regulated by IRF5 in HCC cells.

CONCLUSIONS: High expression of PLOD2 was regulated by IRF5, which was correlated with the poor survival of HCC patients. PLOD2 enhanced HCC metastasis via BIRC3, suggesting that PLOD2 might be a valuable prognostic biomarker for HCC treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app