Add like
Add dislike
Add to saved papers

Design and Development of High-Entropy Alloys with a Tailored Composition and Phase Structure Based on Thermodynamic Parameters and Film Thickness Using a Novel Combinatorial Target.

ACS Omega 2023 August 9
This study presents a novel synthesis route for high-entropy alloys (HEAs) and high-entropy metallic glass (HEMG) using radio frequency (RF) magnetron sputtering and controlling the HEA phase selection according to atomic size difference (δ) and film thickness. The preparation of HEAs using sputtering requires either multitargets or the preparation of a target containing at least five distinct elements. In developing HEA-preparation techniques, the emergence of a novel sputtering target system is promising to prepare a wide range of HEAs. A new HEA-preparation technique is developed to avoid multitargets and configure the target elements with the required components in a single target system. Because of a customizable target facility, initially, a TiZrNbMoTaCr target emerged with an amorphous phase owing to a high δ value of 7.6, which was followed by a solid solution (SS) by lowering the δ value to 5 (≤6.6). Thus, this system was tested for the first time to prepare TiZrNbMoTa HEA and TiZrNbMoTa HEMG via RF magnetron sputtering. Both films were analyzed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, field emission scanning electron microscopy cross-sectional thickness, and atomic force microscopy (AFM). Furthermore, HEMG showed higher hardness 10.3 (±0.17) GPa, modulus 186 (±7) GPa, elastic deformation (0.055) and plastic deformation (0.032 GPa), smooth surface, lower corrosion current density ( I corr ), and robust cell viability compared to CP-Ti and HEA. XRD analysis of the film showed SS with a body-centered cubic (BCC) structure with (110) as the preferred orientation. The valence electron concentration [VEC = 4.8 (<6.87)] also confirmed the BCC structure. Furthermore, the morphology of the thin film was analyzed through AFM, revealing a smooth surface for HEMG. Inclusively, the concept of configurational entropy (Δ S mix ) is applied and the crystalline phase is achieved at room temperature, optimizing the processing by avoiding further furnace usage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app