Add like
Add dislike
Add to saved papers

Improving the Efficiency of Fan Coil Units in Hotel Buildings through Deep-Learning-Based Fault Detection.

Sensors 2023 July 28
Optimizing the performance of heating, ventilation, and air-conditioning (HVAC) systems is critical in today's energy-conscious world. Fan coil units (FCUs) play a critical role in providing comfort in various environments as an important component of HVAC systems. However, FCUs often experience failures that affect their efficiency and increase their energy consumption. In this context, deep learning (DL)-based fault detection offers a promising solution. By detecting faults early and preventing system failures, the efficiency of FCUs can be improved. This paper explores DL models as fault detectors for FCUs to enable smarter and more energy-efficient hotel buildings. We tested three contemporary DL modeling approaches: convolutional neural network (CNN), long short-term memory network (LSTM), and a combination of CNN and gated recurrent unit (GRU). The random forest model (RF) was additionally developed as a baseline benchmark. The fault detectors were tested on a real-world dataset obtained from the sensory measurement system installed in a hotel and additionally supplemented with simulated data via a physical model developed in TRNSYS. Three representative FCU faults, namely, a stuck valve, a reduction in airflow, and an FCU outage, were simulated with a much larger dataset than is typically utilized in similar studies. The results showed that the hybrid model, integrating CNN and GRU, performed best for all three observed faults. DL-based fault detectors outperformed the baseline RF model, confirming these solutions as viable components for energy-efficient hotels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app