Add like
Add dislike
Add to saved papers

A Multifunctional Polyethylene Glycol/Triethoxysilane-Modified Polyurethane Foam Dressing with High Absorbency and Antiadhesion Properties Promotes Diabetic Wound Healing.

The delayed healing of chronic wounds, such as diabetic foot ulcers (DFUs), is a clinical problem. Few dressings can promote wound healing by satisfying the demands of chronic wound exudate management and tissue granulation. Therefore, the aim of this study was to prepare a high-absorption polyurethane (PU) foam dressing modified by polyethylene glycol (PEG) and triethoxysilane (APTES) to promote wound healing. PEG-modified (PUE) and PEG/APTES-modified (PUESi) dressings were prepared by self-foaming reactions. Gauze and PolyMem were used as controls. Next, Fourier transform-infrared spectroscopy, thermomechanical analyses, scanning electron microscopy and tensile strength, water absorption, anti-protein absorption, surface dryness and biocompatibility tests were performed for in vitro characterization. Wound healing effects were further investigated in nondiabetic (non-DM) and diabetes mellitus (DM) rat models. The PUE and PUESi groups exhibited better physicochemical properties than the gauze and PolyMem groups. Moreover, PUESi dressing showed better anti-adhesion properties and absorption capacity with deformation. Furthermore, the PUESi dressing shortened the inflammatory phase and enhanced collagen deposition in both the non-DM and DM animal models. To conclude, the PUESi dressing not only was fabricated with a simple and effective strategy but also enhanced wound healing via micronegative-pressure generation by its high absorption compacity with deformation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app