Add like
Add dislike
Add to saved papers

Sivelestat sodium alleviated Lipopolysaccharide-induced Acute Lung Injury by improving endoplasmic reticulum stress.

Gene 2023 August 10
Acute lung injury (ALI) is a common inflammatory respiratory disorder characterized by a high incidence and mortality rate. This study aimed to investigate the potential therapeutic effects of the neutrophil elastase inhibitor Sivelestat sodium (SIV) in improving endoplasmic reticulum stress (ERS) while treating lipopolysaccharide (LPS)-induced ALI. An ALI model was established using LPS induction. The effects of SIV on ALI were observed both in vivo and in vitro, along with its impact on ERS. Lung tissue damage was assessed using Hematoxylin-eosin (H&E) staining. Lung edema was measured by the lung wet/dry weight ratio. The expression levels of protein kinase R-like ER kinase (PERK), Phospho-protein kinase R-like ER kinase (p-PERK), activating transcription factor 4 (ATF4), eukaryotic translation initiation factor 2α (EIF2a), phosphorylated α subunit of eukaryotic initiation factor 2α (P-EIF2a), and C/EBP homologous protein (CHOP) were analyzed by Western blotting in vivo and in vitro. The levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in Lung tissue samples supernatants were measured by ELISA. Oxidative stress markers were measured by ELISA. Apoptosis was measured using the TUNEL assay. Apoptosis-associated proteins B-cell lymphoma-2 (Bcl-2)、Bcl2-associated x (Bax)、caspase-3 were evaluated through Western blotting in vivo and in vitro. The expression levels of ERS-related proteins, including p-PERK, ATF4, P-EIF2a, and CHOP, were significantly increased in the LPS-induced ALI model. However, SIV markedly reduced the expression levels of these proteins, suppressing the LPS-induced ERS response. Further investigations revealed that SIV exerted a protective effect on ALI by alleviating lung tissue damage and apoptosis, improving lung function, and reducing inflammation and oxidative stress levels. However, when SIV was co-administered with Tunicamycin (TUN), TUN blocked the beneficial effects of SIV on ERS and reversed the protective effects of SIV on ALI. In conclusion, SIV alleviated lung tissue damage and apoptosis, improving lung function, and reducing inflammation and oxidative stress in LPS-induced ALI by improving ERS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app