Add like
Add dislike
Add to saved papers

Characterizing the nighttime vertical profiles of atmospheric particulate matter and ozone in a megacity of south China using unmanned aerial vehicle measurements.

Daytime atmospheric pollution has received wide attention, while the vertical structures of atmospheric pollutants at night play a crucial role in the photochemical process on the following day, which is still less reported. Focusing on Guangzhou, a megacity of South China, we established an unmanned aerial vehicle (UAV) equipped with micro detectors to collect consecutive high-resolution samples of fine particle (PM2.5 ), submicron particle (PM1.0 ), black carbon (BC) and ozone (O3 ) concentrations in the atmosphere, as well as the air temperature (AT) and relative humidity (RH) within a 500 m altitude during nighttime from Oct. 24th to Nov. 6th, 2018. The measurements showed that PM2.5 , PM1.0 , and BC decreased with altitude and were influenced by the nighttime shallow planetary boundary layer (PBL) where BC was more accumulated and fluctuated. In contrast, O3 was positively correlated with altitude. Backward trajectory clustering and Pasquill stability classification showed that advection and convection significantly influenced the vertical distribution of all pollutants, particularly particulate matter. External air masses carrying high concentrations of pollutants increased PM1.0 and PM2.5 levels by 145% and 455%, respectively, compared to unaffected periods. The BC to PM2.5 ratio indicated that local emissions had a minor role in nighttime particulate matter. Strong vertical transport caused by atmospheric instability reduced the differences in pollutant concentrations at various heights. Geodetector and generalized additive model showed that RH and BC accumulation in the PBL were significant factors influencing vertical changes of the secondary aerosol intensity as indicated by the PM1.0 to PM2.5 ratio. The joint explanation of RH and atmospheric stability with other variables such as BC is essential to understand the generation of secondary aerosols. These findings provide insights into regional and local measures to prevent and control night-time particulate matter pollution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app