Add like
Add dislike
Add to saved papers

The relationship between the brain-derived neurotrophic factor and neurocognitive response to physical exercise in individuals with schizophrenia.

OBJECTIVE: Physical exercise can improve neurocognition in individuals with schizophrenia, presumably by facilitating neuroplasticity. There is, however, large inter-individual variation in response. The brain-derived neurotrophic factor (BDNF) has been proposed to mediate these effects. The current aim was to investigate the sparsely studied relationship between peripheral resting BDNF and neurocognitive response to physical exercise in individuals with schizophrenia.

METHOD: The current study reports secondary analyses of data from a randomized controlled trial (RCT), ClinicalTrials.gov number 02205684, recently reported according to the CONSORT guidelines. Eighty-two individuals with schizophrenia (mean age 37 ± 14 years old, 61% men) were randomly allocated to high-intensity interval training (HIIT) or a comparison group performing low-intensity active video gaming (AVG). Both interventions consisted of 2 sessions/week for 12 weeks. In previously published primary RCT analyses, HIIT and AVG showed comparable small to moderate improvements in neurocognition. We now address the inter-individual variability in neurocognitive response. We apply mediation and moderation analyses for repeated measures designs (MEMORE) and mixed effects models.

RESULTS: Baseline neurocognition was not significantly correlated with baseline levels of mature BDNF (baseline-mBDNF) or the precursor proBDNF. Nonetheless, baseline-mBDNF, but not baseline proBDNF, moderated the effect of exercise on neurocognition (p = 0.025) and explained 7% of the variance. The neurocognitive improvement increased with increasing baseline-mBDNF values. The moderating effect of baseline-mBDNF remained significant in a more complex model adding the moderating effects of exercise mode, sex, age, duration of illness and baseline VO2 max on the outcome (neurocognition). Mean baseline-mBDNF significantly decreased from baseline to post-intervention (p = 0.036), regardless of exercise mode, differing by sex and associated with improved VO2 max but not with change in neurocognition. A mediating role of mBDNF on the effect of physical exercise on neurocognition was not supported. Values of proBDNF mainly remained stable from baseline to post-intervention.

CONCLUSION: We found that baseline-mBDNF moderated the effect of physical exercise on neurocognition in individuals with schizophrenia and explained a small part of the inter-individual variation in neurocognitive response. Mean mBDNF decreased from baseline to post-intervention, regardless of exercise mode. A mediating role of mBDNF on the effect of exercise on neurocognition was not supported. The inter-individual variation in neurocognitive response and the complex role of peripheral BDNF in physical exercise is still to be elucidated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app