Add like
Add dislike
Add to saved papers

Effects of adult age and functioning of the locus coeruleus norepinephrinergic system on reward-based learning.

Age-related impairments in value representations and updating during decision-making and reward-based learning are often related to age-related attenuation in the catecholamine system such as dopamine (DA) and norepinephrine (NE). However, it is unclear to what extent age-related declines in NE functioning in humans affect reward-based decision-making. We conducted a probabilistic decision-making task and applied a Q-learning model to investigate participants' anticipatory values and value sensitivities. Task-related pupil dilations and locus coeruleus (LC)-magnetic resonance imaging (MRI) contrast, which served as a potential window of the LC-NE functions, were assessed in younger and older adults. Results showed that in both choice and feedback phases, younger adults' (N = 42; 22 males) pupil dilations negatively correlated with anticipatory values, indicating uncertainty about outcome probabilities. Uncertainty-evoked pupil dilations in older adults (N = 41; 27 males) were smaller, indicating age-related impairments in value estimation and updating. In both age groups, participants who showed a larger uncertainty-evoked pupil dilation exhibited a higher value sensitivity as reflected in the β parameter of the reinforcement Q-learning model. Furthermore, older adults (N = 34; 29 males) showed a lower LC-MRI contrast than younger adults (N = 25; 15 males). The LC-MRI contrast positively correlated with value sensitivity only in older but not in younger adults. These findings suggest that task-related pupillary responses can reflect age-related deficits in value estimation and updating during reward-based decision-making. Our evidence with the LC-MRI contrast further showed the age-related decline of the LC structure in modulating value representations during reward-based learning. Significance Statement: Age-related impairments in value representation and updating during reward-based learning are associated with declines in the catecholamine modulation with age. However, it is unclear how age-related declines in the locus coeruleus norepinephrine (LC-NE) system may affect reward-based learning. Here, we show that compared to younger adults, older adults exhibited reduced uncertainty-induced pupil dilations, suggesting age-related deficits in value estimation and updating. Older adults showed a lower structural magnetic resonance imaging (MRI) of the LC contrast than younger adults, indicating age-related degeneration of the LC structure. The association between the LC-MRI contrast and value sensitivity was only observed in older adults. Our findings may demonstrate a pioneering model to unravel the role of the LC-NE system in reward-based learning in aging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app