Add like
Add dislike
Add to saved papers

A 3D-Printable, Low-Cost Obturator for Less Invasive Gynecologic Brachytherapy.

Curēus 2023 June
The purpose of this report is to design, develop, and evaluate a cost-effective applicator for interstitial brachytherapy (ISBT) to minimize patient morbidity and facilitate access to curative radiation treatment for gynecologic cancers, especially in low-resource settings. A computer-aided design and prototype were developed of a proposed applicator that incorporates 44 slotted channels to gently guide needles, with or without a tandem, through the vaginal canal, effectively eliminating the need for transcutaneous needle insertions typically employed during ISBT of advanced gynecologic cancer and thus reducing the risk of vaginal laceration and bladder or rectal injury. The tested prototype was developed using AutoCAD software (Autodesk, San Francisco, CA) and 3D printed in Accura Xtreme Gray material using stereolithography. Small-scale iterative tests using a gelatin phantom were conducted on this prototype to confirm the efficacy of the applicator through inter-operator usability, needle stability, and needle arrangement. A promising prototype was developed aimed at addressing key issues with traditional perineum-based templates to facilitate ISBT, including being able to cover bulky tumors with parametrial extension reliably, decrease the risk of tissue or organ injury, and treat women with a prior hysterectomy. Results of preclinical testing demonstrated that the applicator met its purpose, suggesting that it may facilitate ISBT without the morbidity typically associated with the procedure, especially by addressing concerns associated with implementing the procedure in low-resource settings. The applicator shows substantial promise in the treatment of advanced gynecologic cancer. While further testing remains necessary to confirm its translatability to the clinical setting, the applicator appears capable of meeting its design objectives, representing its potential for improving upon current methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app