Add like
Add dislike
Add to saved papers

How heterogeneity in density dependence affects disease spread: when lifestyle matters.

People's lifestyles play a major role in disease risk. Some employment sectors and transport modes involve fixed exposures regardless of community size, while in other settings exposure tracks with population density. MERS-CoV, a coronavirus discovered in Saudi Arabia in 2012 closely related to those causing SARS and COVID-19, appears to need extended contact time for transmission, making some segments of a community at greater risk than others. We model mathematically how heterogeneity in contact rate structure impacts disease spread, using as a case study a MERS outbreak in two Saudi Arabian communities. We divide the at-risk population into segments with exposure rates either independent of population density or density-dependent. Analysis shows disease spread is minimized for intermediate size populations with a limited proportion of individuals in the density-independent group. In the case study, the high proportion of density-independent exposure may explain the historical outbreak's extinction in the larger city.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app