Add like
Add dislike
Add to saved papers

Bio-based antimicrobial food packaging films based on hydroxypropyl starch/polyvinyl alcohol loaded with the biosynthesized zinc oxide nanoparticles.

Bio-based active food packaging materials have received much attention in the last decades. It is known that the traditional materials used for food packaging applications lack some critical characteristics such as resistance to the harmful microbes that cause damage to the preserved foods. Therefore, the current study aimed to find alternative packaging films based on efficient polymers. This research work was designed to prepare film mats using hydroxypropyl starch (HPS), polyvinyl alcohol (PVA), palmitic acid (PA) and biosynthesized zinc oxide nanoparticles (ZnONPs). The fabricated films were coded as 1H, 2H, 3H and 4H based on the utilized concentration of ZnONPs. The biosynthesized ZnONPs and the bio-based films loaded with ZnONPs were fully characterized. The results revealed that ZnONPs were spherical in shape and size ~40 nm. The surface structure of the produced bioactive packaging films is smooth with homogeneous features and excellent mechanical and thermal stability properties. The prepared bioactive packaging film loaded with ZnONPs (4H) exhibited outstanding antibacterial activity among other films against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 with inhibition zones 15.1 ± 0.76 and 12.1 ± 0.71 mm respectively. Correspondingly, packing film 4H exhibited potential antifungal activity toward Aspergillus niger RCMB 02724, A. flavus RCMB 02782, Penicillium expansum IMI 89372 and Fusarium oxysporum RCMB 001004 with inhibition zones (16 ± 1.0, 22 ± 0.90, 18.0 ± 1.1 and12.3 ± 0.57 mm respectively). Moreover, all prepared films did not show cytotoxicity on the normal cell line (Wi38) and recorded biodegradability properties that reached around 85 % after four weeks in soil. Based on these results, the antimicrobial films comprising HPS/PVA and loaded with the biosynthesized ZnONPs can be considered a suitable film for food packaging purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app