Add like
Add dislike
Add to saved papers

Effects on the Human Tear Film of Applying Skin Lipids to the Ocular Surface.

Cornea 2023 July 28
PURPOSE: The effect of skin lipids on the formation and stability of the human tear film was investigated.

METHODS: Skin swab substances (SSSs) were applied to the eyes of volunteers and studied using fluorescein or with TearView, which records infrared emissivity showing tear film integrity in real time. Results were compared with similar experiments using castor oil, freshly collected meibum, or acetic acid, which simulated the low pH of the skin.

RESULTS: Fluorescein and TearView results were comparable. TearView showed the natural unaltered tear film over the whole eye, instant changes to the tear film, and meibomian gland activity. Minimal amounts of SSS destroyed the integrity of the film and caused pain. Corneal epithelial damage could be detected. TearView showed that SSS stimulated meibomian gland secretion if applied directly to the posterior eyelid margin. Excess meibum had no effect on the tear film spread or integrity. Castor oil formed floating lenses on the tear film which were spread by a blink but then condensed back toward themselves. There was no pain or surface damage with these oils.

CONCLUSIONS: SSS contamination of the ocular surface disrupts the tear film, causes stinging, and fluorescein staining of the corneal epithelial cells after a blink. SSS stimulates meibomian gland activity. It is possible that various ocular conditions associated with dry eye, such as blepharitis and ocular rosacea, may compromise a meibomian lipid barrier of the eye lid margin. Skin lipids would then have access to the ocular surface and cause dry eye symptoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app