Add like
Add dislike
Add to saved papers

Engineering hetero-structural iron nanozyme decorated liposome with a self-cascade catalysis performance.

Metal-based enzyme mimics are considered as acceptable agents in fabricating heterogeneous biocomposites through valency integrations because of their biomedical or biological properties. As the basic substitute, it delights us to utilize Fe3 O4 nanoparticles (NPs) as metallic enzymes and overcome the limitation of peroxide-like enzymatic activity in physiological conditions. In this work, we present the fabrication of a soy phosphatidylcholine/Fe3 O4 @Ag/GOx (SFAG) biocomposite as a cascade enzyme, which exhibits a peroxidase-like property in kinetic processes, as shown from an analysis of the glucose detection processes. We also explored the mechanism of an ultrasound & microfluidic approach for the synthesis of SFAG. The resultant SFAG implies a characteristic absorption peak (652 nm), size (55 μm), and surface charge (-32.93 ± 2.58 mV). This is utilized to confirm the peroxidase-like activity by catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2 O2 under physiological conditions. But also, SFAG conveys a positive effect on the peroxidase-like activity at pH = 5.8, 7.4, and 8.0. The Michaelis-Menten parameters ( K m ) and the V max values of H2 O2 are 1.914 mM and 1.429 × 10-7 M s-1 , which further confirms the catalytic performances of the SFAG structure. The established platform was also used successfully for the determination of glucose in PBS and diluted synthetic blood with excellent sensitivity and stability. The relative selection and sensitivity show that the SFAG structure has a great possibility as a cascade metallic enzyme in chemokinetic works.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app