Add like
Add dislike
Add to saved papers

A MMP-2 Responsive Nanotheranostic Probe Enabled Synergistic Therapy of Rheumatoid Arthritis And Mr/Ct Assessment of Therapeutic Response in Situ.

This study reports a facile and green synthesis of a new multifunctional nanotheranostic probe for the synergistic therapy of rheumatoid arthritis (RA) and in situ assessment of therapeutic response. The probe is synthesized through a one-step self-assembly of two exquisitely designed peptide-amphiphilic block copolymers (PEG-DTIPA-KGPLGVRK-MTX and Pal-GGGGHHHHD-TCZ) under mild conditions , requiring minimal energy input. The resultant probe demonstrates excellent biocompatibility, water-solubility and colloidal stability . It exhibits a strong IL-6R targeting ability towards inflamed joints, and releasees drugs in an MMP-2-responsive manner. The co-loading of MTX and TCZ into the probe enables synergistic RA therapy with improved efficacy by simultaneously decreasing the activity of adenosine synthetase and interfering with the binding of IL-6 to its receptor. In addition, the resultant probe exhibits a high r1 relaxation rate (7.00 mM-1 s-1 ) and X-ray absorption capability (69.04 Hu mM-1 ), enabling sensitive MR and CT dual-modal imaging for simultaneous evaluation of synovial thickness and bone erosion. Both in vitro experiments using lipopolysaccharide-treated RAW264.7 cells and in vivo experiments using collagen induced arthritis mice demonstrate the probe's high effectiveness in synergistically inhibiting inflammation. This study provides new insights into RA theranostics, therapeutic monitoring, the design of multifunctional theranostic probes and beyond. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app