Add like
Add dislike
Add to saved papers

Dimethyl fumarate inhibits ZNF217 and can be beneficial in a subset of estrogen receptor positive breast cancers.

PURPOSE: The oncogenic factor ZNF217 promotes aggressive estrogen receptor (ER)+breast cancer disease suggesting that its inhibition may be useful in the clinic. Unfortunately, no direct pharmacological inhibitor is available. Dimethyl fumarate (DMF) exhibits anti-breast cancer activities, in vitro and in pre-clinical in vivo models. Its therapeutic benefits stem from covalent modification of cellular thiols such as protein cysteines, but the full profile of molecular targets mediating its anti-breast cancer effects remains to be determined.

METHODS: ER+breast cancer cells were treated with DMF followed by cysteine-directed proteomics. Cells with modulated ZNF217 levels were used to probe the efficacy of DMF.

RESULTS: Covalent modification of ZNF217 by DMF identified by proteomics was confirmed by using a DMF-chemical probe. Inhibition of ZNF217's transcriptional activity by DMF was evident on reported ZNF217-target genes. ZNF217 as an oncogene has been shown to enhance stem-like properties, survival, proliferation, and invasion. Consistent with ZNF217 inhibition, DMF was more effective at blocking these ZNF217-driven phenotypes in cells with elevated ZNF217 expression. Furthermore, partial knockdown of ZNF217 led to a reduction in DMF's efficacy. DMF's in vivo activity was evaluated in a xenograft model of MCF-7 HER2 cells that have elevated expression of ZNF217 and DMF treatment resulted in significant inhibition of tumor growth.

CONCLUSION: These data indicate that DMF's anti-breast cancer activities in the ER+HER2+models, at least in part, are due to inhibition of ZNF217. DMF is identified as a new covalent inhibitor of ZNF217.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app