Add like
Add dislike
Add to saved papers

Resveratrol attenuated high intensity exercise training-induced inflammation and ferroptosis via Nrf2/FTH1/GPX4 pathway in intestine of mice.

BACKGROUND: Moderate exercise has beneficial effects for human health and is helpful for the protection against several diseases. However, high intensity exercise training caused gastrointestinal syndrome. Resveratrol, a plant extract, plays a vital role in protecting various organs. However, whether resveratrol protected mice against high intensity exercise training-induced intestinal damage remains unclear. In this study, our objective was to investigate the protective effects and mechanism of resveratrol in high intensity exercise training-treated mice.

METHODS: Mice were treated with swimming exercise protocol and/or resveratrol (15 mg/kg/day) for 28 consecutive days. Then, the mice were sacrificed, and a series of evaluation indicators, including inflammatory factors and intestinal permeability of the gut, were measured based on this model. The expressions of inflammatory factors (tumor necrosis factor (TNF)-α; interferon (IFN)-γ, interleukin (IL)-6 and IL-10), oxidative stress (Nrf2, glutathione (GSH), hydrogen peroxide (H2 O2), catalase (CAT) and malondialdehyde(MDA)), intestinal barrier (gut permeability, ZO-1, Occludin and Claudin-1 as well as ferroptosis (Fe2+, Fe3+, SLC7A11, glutathioneperoxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1)) were measured, respectively.

RESULTS: High intensity exercise training induced colon damage, manifested as inflammation (increased TNF-α, IFN-γ and IL-6 concentrations, and decreased IL-10 concentration), oxidative stress (the increase of H2O2 and MDA concentration, and the reduced CAT and GSH activities), intestinal barrier injury (increased gut permeability and intestinal fatty-acid binding protein concentration,and inhibited ZO-1, Occludin and Claudin-1 expressions) and ferroptosis (the increased of Fe2+ and Fe3+ concentrations, and suppressed phosphorylated Nrf2, SLC7A11, GPX4 and FTH1), which was relieved by resveratrol treatment in mice.

DISCUSSION: Resveratrol attenuated high intensity exercise training-induced inflammation and ferroptosis through activating Nrf2/ FTH1/GPX4 pathway in mouse colon, which providing new ideas for the prevention and treatment of occupational disease in athlete.

Full text links

We have located open access text paper links.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app